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The effects of a clearance or interference on the normal mode frequencies of
a n-dof system with bilinear stiffness and without damping are investigated
through various modifications of the bilinear frequency relation. First, the exact
penetration distances and bilinear natural frequencies of a single-degree-of-
freedom system are analytically obtained in terms of the amount of clearance
and the strength of non-linearity, and an equivalent linear system is derived.
These results are in turn used to construct three methods which approximate
the bilinear frequencies for the n-dof system. The specific example of a two-dof
system is studied in which the resulting approximate frequencies are compared
with those obtained from numerical simulations in order to determine the most
accurate approximation technique. The results demonstrate how these bilinear
normal mode frequencies vary with the magnitude of the clearance/interference
and thus point toward the need of including such effects in methods which
utilize the bilinear frequency relation.

1. INTRODUCTION

Clearances exist in many mechanical systems either by design or as the result of
wear or failure. In particular, non-linear systems in which the force—displacement
curves are approximately piecewise linear usually contain some amount of
clearance between the equilibria of the linear subregions and the contact
locations which are the borders between these subregions. These systems are of
great importance in the modelling of such phenomena as gear backlash, joint
dynamics, and cracks in beams and shafts. When the stiffness on one side of the
clearance is large, repeated impacts, referred to as vibro-impacts, can lead to
large dynamic loads and excessive noise. Accurate knowledge of the system
response both to external forces and in free vibration helps in the design and
control of the system. The determination of the effect of clearance on the natural
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frequencies and motion of such systems is an important step since resonance
occurs when the system is forced at these frequencies.

Since piecewise linear systems are non-linear, they exhibit much of the
complicated phenomena associated with non-linear systems. A large amount of
literature [1-4] has been written on this subject, most of which deals with one- or
two-degree-of-freedom systems with external forcing in the context of modern
dynamical systems theory. Rather than pursuing this route, this study concerns
the subject of non-linear normal mode frequencies (the non-linear equivalent of
linear eigenfrequencies) associated with multi-degree-of-freedom bilinear
undamped systems with a non-vanishing clearance.

The treatment of free oscillations of single-degree-of-freedom piecewise linear
systems is available in several standard texts [5—7]. In particular, a formula was
derived in reference [7] for the period of quarter-symmetric, undamped, free
oscillations of a single mass and the effects of clearance variations on the period
of the system were briefly outlined. In a recent paper, Todd and Virgin [§]
derived the natural frequencies of a single-mass asymmetric bilinear oscillator
and included the special case of the impact oscillator with vanishing time of
contact. It was shown in their study how both the natural frequency and the
penetration distance into the second linear subregion vary with the ratio of the
clearance magnitude to the initial amplitude. However, their results were partly
incorrect due to the presence of errors (to be discussed) in the mathematical
derivation. While the correct solution to the single mass problem has served as
the main motivation for the present work, the scope of this paper is extended to
include a discussion on techniques for approximating non-linear normal mode
(NNM) frequencies of multi-degree-of-freedom bilinear systems with clearances.
Of the few papers to deal with clearance effects on multi-degree-of-freedom
systems, the focus has primarily dealt directly with the frequency response to
external forcing [9].

Since the first investigations of NNMs by Rosenberg [10], it has been a subject
of much investigation for various non-linear systems [l11]. Until recently,
however, few studies on the characteristics of bilinear normal modes (BNMs)
existed, mostly due to difficulties associated with the non-smooth aspect of such
systems. Three important contributions to the subject include the recent studies
of Zuo and Curnier [12], Chen and Shaw [13], and Chati ef al. [14]. In reference
[12] the BNM frequencies were derived using both a numerical technique and an
approximate analytical approach for two-degree-of-freedom non-gyroscopic and
gyroscopic bilinear systems. The analytical approach utilized the well-known
relation for bilinear frequencies of single-degree-of-freedom systems. However,
the resulting modal frequencies are independent of the amplitudes and energy in
their work because of the lack of a clearance. In reference [13] a method for
obtaining the normal modes, associated modal dynamics, and the frequency—
amplitude relationship for each mode using invariant manifolds was presented
for non-gyroscopic bilinear systems with a non-vanishing clearance. While this
technique was applied to a two-degree-of-freedom example, the magnitude of the
clearance was fixed so that the effects of clearance variations on the frequencies
were not shown. In reference [14] both a perturbation method and another
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approximate analytical technique which incorporates the bilinear frequency
relation were used in a bilinear two-degree-of-freedom model in order to justify
use of the latter method in calculating the natural frequencies of a cracked beam.
As in reference [12], however, no clearance between the equilibria and the
contact location was present.

The focus of this study is, first, to present the exact solution for the effects of
clearance variation on the natural frequency and penetration distance of the
single mass problem considered in reference [§8] and, second, to present and
compare three analytical techniques for approximating the BNM frequencies for
multi-degree-of-freedom bilinear systems with clearances. For this purpose, the
analytical approximation techniques employed in references [12] and [14] which
are based on the bilinear frequency relation are modified to include a non-
vanishing clearance while a third similar method is also presented. Unlike in
reference [13], the normal modes themselves with their associated dynamics are
not obtained analytically. The proposed techniques are then applied specifically
to a two-mass system in which the resulting BNM frequencies are compared with
those obtained from numerical simulations

2. SYSTEM UNDER CONSIDERATION

Consider the n-degree-of-freedom vibrating system shown in Figure 1 whose
equations of motion are

miX; +f(x1) —kix, =0,
nyXxX, + (kl -+ kz)Xz —kix1 —kyx; =0,

My X, + (knfl + kn)xn —ky_1x4-1 =0,
B kixi, Xy < Xey
f(XI) B {(kl +kc)xl - kcxa X > xt?a} (1)

where the derivatives are with respect to a time /. The asymmetric bilinear
stiffness of the first mass is plotted in Figure 2 in which it is seen that the overall
domain is divided into two distinct linear subregions in which the total energy is
always conserved. Unlike the approaches of some researchers, the clearance x. is
not restricted to be positive so that a negative clearance, or interference, is also
allowed. Both cases are represented in Figure 2. Since the masses’ positions are
measured from equilibrium, penetration into the second subregion is made only
when the energy of the system is sufficient such that the clearance is traversed by
the first mass, i.e. x;>x. It will be seen that the bilinear free oscillation

-, > x, =,

k, k, k, —xm k,
i) g ]
[ONO) [ONO) [ONO)

Figure 1. An n-degree-of-freedom bilinear vibrating system with clearance.
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Figure 2. Force versus displacement of the first mass for the cases of (a) clearance and (b)
interference.

frequencies depend on both the clearance and the amplitude in this case.
Otherwise, if the energy is insufficient for contact with the free spring, then the
system remains in the first linear subregion and the solution is easily obtained. In
the case of interference, the energy must be sufficient for the first subregion to be
obtained (i.e. x; < x.); otherwise the system remains continuously in contact with
the free spring.

At this point the following scalings are introduced:

w=mifmy, ki =kifki, kc=ke/ki, /Iij:’ci/,uja w_ = \/ki/my,

o =+/(ki+k)/m, t=ow_t, a=0i/o_=+1+xk, (2)

where w_ and w, are the linear frequencies of vibration of m; (with m, held
still) before and after contact with the free spring, respectively. Equation (1) is
now rewritten in matrix form as

5(1 K“ —1 0 0 X1 Fl
X2 —2 Aa+ln —In 0 X2 0
+ . . . . = BE
0 : : : : 0
Xn 0 0 _/l(n—l)n j-(n—l)n + Amn Xn
17 X < xL‘a 0? X < x(,‘a
K = { 5 : }, = { 1 } (3)
o, X1 > X, KeXe, X1 > X,
or
%+ Kx=F, (4)

where the derivatives are now with respect to the dimensionless time 7. Equation
(4) may be solved to obtain solutions x_(7) and x. (¢) before and after contact,
respectively, and the entire solution for the bilinear system is obtained by
matching these solutions at x = x..
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3. SINGLE-DEGREE-OF-FREEDOM BILINEAR SYSTEM

The single-degree-of-freedom version of equation (4) is
§'C+K11X:F1, (5)

where K;; and F, are defined in equation (3). This is the same problem which
was considered by Todd and Virgin [8] and their procedure is also used here. In
what follows, the mass is assumed to be released from rest at a given distance to
the left of the equilibrium position in the x < x,. subregion. Therefore, for given
initial conditions x(0) = —x, and x(0) = 0, the solution in this region is

x_(1) —X(cos?
bt e “
. osinz
which yields the circle
¥ it = x% (7)

in the phase plane. (Note that an ellipse is generated in real time.) Of course, if
contact is made with the free spring, then only the portion for which x < x, is
present while the connecting portion for x > x, is an ellipse whose precise shape
is determined from the solution in the second subregion. When multiplied
through by 1/2, equation (7) is also a statement of conservation of the total
energy E = x3/2.

Because of the presence of the non-homogeneous term in equation (5), the
solution after contact is made must include a particular solution and can in
general be written as

x (1)  [Asin(ar) + Bcos(at) + x, (8)
i,(t)] | Aocos(at) — Busin(at)

where 4 and B are to be found and
Xe = e/ (1 + Kee)xe = (1 = 1/a?)x, 9)

is the mathematical equilibrium position in the second subregion. In the elastic
rebound limit (¢ — o00) it is equal to the clearance. Notice that x, is a physical
equilibrium of the bilinear system only if the clearance is negative, i.e., x.<0,
while the origin is the true physical equilibrium if x.>0. In the latter case x,
would be the physical equilibrium if the mass was “‘glued” to the free spring.

It should be pointed out that one of the errors in the analysis presented in
reference [8] was the omission of a particular solution in the second subregion, a
situation which results in a non-physical stiffness discontinuity at x = x,.. As seen
in Figure 2, the actual stiffness is everywhere continuous. The impact condition
is x_(¢.) = x. such that the time of impact is found as

to =cos '(—p), (10)

where p = x./x, is the ratio of the clearance to the initial displacement
magnitude and must lie in the interval [—1, 1] if contact/separation is to occur.
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Since x, is assumed positive, an interference results in a negative value of this
ratio and contact occurs before the system reaches the origin. If p > 1 then the
clearance is too large for contact to occur and the system remains in the first
linear subregion while if p < —1 then the system remains in the second linear
subregion. For —1 < p <1 the distance D_ traversed by the mass before contact
occurs can be expressed in dimensionless form in terms of p as

D_/xyo=1+p. (11)

The displacement and velocity matching conditions (i.e. x.(¢.) = x. and
X, (t.) = x_(t.)) at the point of contact require that

sin(ar,)  cos(at) ] [A} _ [xc — Xe ] (12)

acos(at,) —oasin(at.) ||B X sin(z.)

The solution of this system results in an oscillation amplitude in the second
subregion given by

C= VAT B = (xo/0)\/1 - p2(1 - 1/a2), (13)

whilst the maximum displacement is C + x, from equation (8). This gives the
ellipse

P (xp — x.)* + =0 Ct = XG — XX (14)

with center at (x4, X4+) = (x., 0) in the phase plane which is matched to the
circle of equation (7) at x_ = x+ = x,, as shown in Figure 3 for both the
clearance and interference cases. Here, the dashed line represents the switching
plane between the linear subregions and the dot identifies the point (x,, 0). Since
the total energy E = x2/2 remains constant, the potential energy in the second
subregion can be found from equation (14) as V' = (6*(x; — x,)*> + x.x.)/2.

To find the actual penetration distance D, into the second subregion, x, is
subtracted from the maximum displacement to obtain

D= Ctxe—xe = (vofa)y/1 - p2(1 = 1/02) = x. /. (15)

Dividing by the initial displacement magnitude x,, equation (15) is expressed in
terms of the dimensionless parameters o and p as

Dy fxo = (1) /1 - p2(1 — 1/a2) — p/o (16)

for —1 < p <1 while the penetration distance is zero if p > 1. This is graphed
versus the clearance as the solid lines in Figure 4 for a variety of different values
of a. The dashed line represents the distance traversed before contact given by
equation (11). The total distance traversed by the mass during a half-period is
the sum of these, i.e.,

(D_+Dy)/xo = 1+ (/21— p2(1 — 1/2) + p(1 — 1/2). (17)
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Figure 3. Phase plane portraits for the single-degree-of-freedom bilinear system for the cases of
(a) clearance (x =2, p = 0-2) and (b) interference (x = 2, p = —0-2). The dashed line represents
the switching plane and the point is the equilibrium position of the second subregion.
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Figure 4. Traversal distance for the single-degree-of-freedom bilinear system as a function
of clearance in the first subregion (D_/xy, ---) and the second subregion (penetration distance
D. /xo, —) for (top to bottom) o = 1, /2, 2, 4, 10 and oo.
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It should be pointed out that the results in equations (13—16) do not agree with
those obtained in reference [§] because of the previously mentioned omission of
the particular solution in that study. In addition, the authors’ use of the absolute
value of x. (neglecting its sign) in equation (15) results in the penetration
distance being non-physically symmetric with respect to p.

For a given value of «, the value of p which results in the largest penetration
distance into the second subregion is found by setting 9(D . /x,)/0p to zero. For

Kk.>1 (o> > 2) this results in
pmax:_\/ 1/(062— 1)9 (18)

whereas p,..« = —1 when 1<o?<2 as seen in Figure 4. Thus, the largest
penetration occurs for an interference with magnitude less than x, only when the
stiffness of the free spring is greater than that of the attached one (i.e., k. > k);
otherwise, it occurs when x. = —x, and the system always remains in the second
linear subregion. These results are in contrast to those presented in reference [§]
in which the maximum penetration was said to occur when p = 0 (i.e., vanishing
clearance) regardless of the value of o. However, it is seen from equation (18)
that p,... = 0 only in the limit as o« — oo (i.e., as the contact spring becomes
rigid). Since this is the elastic rebound case of vanishing time of contact (vibro-
impact), there is no penetration when o = oo regardless of p as demonstrated in
Figure 4. Substitution of p,,,. into equation (16) yields the maximum penetration
into the second subregion as

BT ) w

X0 2/, 1 <o?<2.

Equations (18) and (19) are plotted in Figure 5 as the solid and dashed lines,
respectively.

20
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Figure 5. The value of pn.x (—) which results in the maximum penetration distance
((D4/%0)max> ---) as a function of the bilinear frequency ratio for the single-degree-of-freedom
system.
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Figure 6. Bilinear natural frequencies for the single-degree-of-freedom system as a function of
clearance for (bottom to top) o = 1, V2,2, 4,10 and oco.

The total period of the mass is the sum of the partial periods of each of the
two subregions and can be found by integrating over the closed path I" as

X 1 CHx,
r —X0

X_ xe X4

in terms of the orbits in the phase plane given by equations (7) and (14) from
which the velocities in the above integrals are determined. Evaluation of these
integrals using equations (9) and (13) yields the period as

T=2n/2 4 sin "' p+ (1/2)(x/2 = sin(p/ (/1 — p2(1 = /2] (21)
from which the bilinear natural frequency is obtained as
Q=2n/T. (22)

Q is plotted versus p in Figure 6 for various values of a. Again, equations (21,
22) are different from the frequency derived in reference [8] for the same reasons
as mentioned above.

When o« =1, no change of stiffness is felt between subregions and the
frequency is independent of the clearance or amplitude. If the clearance vanishes
(p = 0), then equation (22) simplifies to

Q=2/(1+1/a), (23)

which runs from 1 to 2 as « increases from 1 to oo, the latter case being the
elastic rebound limit where the natural frequency has doubled from that of
totally free oscillation. Also, 2 =1 when p =1 and @ =« when p = —1 since
the system continuously remains in the respective subregions. As o — oo,
equation (22) becomes
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Q=2/(1+(2/n)sin"' p), (24)

which is represented by the topmost curve in Figure 6. This curve represents the
asymptotic limit for any given clearance as a higher frequency is not possible. It
should be pointed out that these frequencies are in normalized time. In real time
w_ is also multiplied in equations (22) and (23) which become

-1
Q=2w_w; [w+ (1 + %Sinﬂ p) +w_ (1 — %sirfl (oc\/l - pzp(l = 1/0(2)>>]

(25)

and
Q=200 /(0 +w_) (26)

respectively. Equation (26) is the well-known “‘bilinear frequency relation” and
has appeared in many studies of bilinear systems which do not contain a
clearance (e.g. references [1, 12, 14]).

An equivalent linear system may now be constructed. For this purpose, the
original bilinear spring system is replaced with one linear spring which has a
stiffness k., = Q* in normalized time or k,, = m;Q* in real time. When equation
(26) for vanishing clearance is used, this results in

ke = mi® = 401/l +1//k5) (27)

in terms of the stiffness before (k_ = k;) and after (k. = k; + k.) impact. In
normalized time, the equivalent linear stiffness including clearance effects is

-2
2. 1 2 . _ 0
k, =Q*=4 {l—i——sm ! }—1—— 1 —Zsin”! ,
g < A B PR VAV el s y )

(28)

where it should be recognized by analogy to equation (27) that the normalized
stiffnesses before and after impact for vanishing clearance are k_ =1 and
k. = o2, respectively. The terms enclosed in braces { } may be interpreted as the
“correction factors™ to these stiffnesses to account for the effects of the non-
vanishing clearance. Hence, the “‘corrected” stiffnesses before and after impact
are

k- ={1+(2/n)sin ! p} > (29)

-2
A—) _% .1 14
ki = {1 —sin (a\/l 0 1/a2)> } (30)

and

respectively.
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Finally, having obtained the period of motion, the complete solution for 7 >0
can be expressed as

J— x_(t_iT)) iT—t(<t<iT+tc’ .
(1) = {X+(l— iT), iTH+t.<t<(i+DT—t., }, i=0,1,2,..., (31)

where x_(f) and x.(f) are given in equations (6) and (8), respectively. The
penetration distances and natural frequencies given here were compared with
those obtained via numerical simulation of equation (5) and to those given in
reference [8]. The present results agreed with those from the simulations with an
accuracy determined by the numerical time step while those of reference [8], as
expected, did not agree for non-vanishing clearances. For the simulation, a
“fitting”” procedure was utilized wherein the equations of motion were integrated
using a fourth-order Runge—Kutta (R-K) algorithm with a constant time step
until contact with the free spring was detected. At this point one Euler
integration step was performed using the exact time step needed to reach the
boundary after which the R—K procedure was continued but with a smaller time
step to account for the increased stiffness. This procedure was also used for
release from the free spring after which use of the original time step was
resumed. Results confirmed that the energy remains constant across the contact
boundary.

4. APPROXIMATE METHODS FOR THE MULTI-DEGREE-OF-FREEDOM
BILINEAR SYSTEM

4.1. BILINEAR NORMAL MODE CHARACTERISTICS

The multi-degree-of-freedom bilinear system in Figure 1 is now considered.
One desires to find the BNM frequencies of the system as a function of the
clearance and stiffness of the free spring. For this purpose, three different
approximation techniques which are derived from the bilinear frequency relation
are considered. Each contains adjustments to account for a clearance or
interference. First, however, some of the characteristics of BNMs are reviewed
for the reader.

1. While the motions associated with most initial conditions of bilinear
systems are quasiperiodic or even chaotic, the motions of BNMs are periodic in
time. Hence, resonance occurs when the system is forced at the associated
frequencies or, since the motions are in general not sinusoidal, integral multiples
of these frequencies.

2. The trajectories of BNMs in the configuration space are open curves (instead
of straight lines in the linear case) which, in contrast to NNMs of smooth non-
linear systems, neither pass through the origin nor are orthogonal at their
intersection. Although the displacements do not vanish simultaneously, they do
reach their maxima and minima at the same time, however.

3. If the clearance is zero, then the BNM frequencies are constant and
independent of the energy level since the nonlinearity is concentrated at the
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origin. For a non-zero clearance, however, the frequencies depend on the energy
(initial amplitude).

4. For weak non-linearities, i.e., small (« — 1), the number of structurally stable
BNMs is generally equal to the number of linear modes for non-resonant cases.
Unlike the case for smooth non-linear systems, sufficient conditions for the
existence and uniqueness of normal modes for bilinear systems are not available
(although a necessary condition is given in reference [13]). As the strength of
non-linearity increases, therefore, additional BNMs which have increasingly
more complicated motions may occur along with regions of chaotic behavior.

4.2. PIECEWISE MODAL METHOD

In reference [14], Chati er al. utilized the bilinear frequency relation in
approximating the natural frequencies of both a two-degree-of-freedom bilinear
system and a cracked beam. In each example, the eigenfrequencies in each
subregion were found via a linear eigenanalysis (a finite element package was
utilized for the beam) and used in the bilinear frequency relation of equation
(26). The resulting natural frequencies obtained using this procedure are

Q,’ = 2(,(),[C()+l'/<(U+[ + (,(),l'), (32)

where w_; and w,; are the eigenfrequencies before and after contact,
respectively. The associated period is the sum of the half-periods of these
individual linear modes, while the associated motion consists of the splicing
together of the half-eigenvectors of the linear modes. This is an approximation
rather than an exact result since, if initial conditions were chosen corresponding
to the ith linear normal mode in the first subregion, then once contact occurs the
motion would consist of a superposition of all associated linear modes in the
second subregion rather than just the ith mode [14]. For the two-degree-of-
freedom system the approximate bilinear frequencies were shown to be
reasonable when the strength of non-linearity was small, however, since the
initial conditions for the BNM would be close to that of the ith linear normal
mode in the first subregion. As the non-linearity (free spring stiffness) was
increased, the approximated bilinear frequencies diverged from those obtained
using numerical simulation, as did those obtained using a perturbation
approach.

This procedure can be modified to include a clearance by first finding the
equilibrium vector X, in the second subregion as a function of the total number n
of masses. Using a static analysis in Figure 1 this can be found for the kth mass
as

ke = [(n = k+ 1) = 1)/(n(o = 1) + 1], (33)

which reduces to equations (9) when n = 1. The motion of the first mass in the
ith linear normal mode in each subregion can be written as

{xl(t)] _ [—xlo COS((DJ)} (34)

x1-(1) X100—; sin(w_;t)
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and

[xH(Z)] _ {A sin(w.;t) + Bcos(wyt) + X1e } (35)

X14(2) Aw.icos(wyit) — Ba;sin(w,t) |’

where 4 and B are to be found. The displacement and velocity matching
conditions of the first mass at the moment of contact then result in

ooty oo | 18) = Lo ) (36)

where B =cos 'p, p=x./x0 and y;= w,;/o_; is the ratio of the eigen-
frequencies in the ith mode before and after contact. The solution of this system
results in an oscillation amplitude for the first mass in the second subregion
given by

C= VAT B = (xio/s)1—p2(1 = G/ Ine2 - D+ 1D, (37)

while the penetration distance of mass 1 into the second subregion is given by

2
LA Y (I (R /SR b D A (38)
X0 ) n(o?—1)+1 n(e®—1)+1

The above equations reduce to equations (13) and (16) when n = 1 since o = v;
in that case. The normalized frequency is found by integrating over the closed
path as in equation (20) to yield

E—Fsin_l +l T
2 P\ 2

- yip o
—sin . (39)
(( +1)y/1 = (1 = (33/ In(a2 1)+1])2)>>]

which reduces to equation (22) for n = 1. Equation (39) can thus be used to
obtain approximate BNM frequencies for bilinear systems with clearance as
equation (32) was used for systems without a clearance in reference [14].
However, because the eigenvectors in each subregion match only if the clearance
vanishes, for a non-vanishing clearance the displacements and velocities of
masses 2—n are discontinuous at the instant that mass 1 (whose displacement and
velocity remain continuous) impacts the free spring. It will be seen that the
magnitude of the discontinuity (and therefore the accuracy of the approximated
frequency) varies with the mode.

Although two sets of eigenfrequencies must initially be computed in general,
for the special cases in which formulas for the modal frequencies in each linear
subregion exist, equation (39) may be used to obtain similar formulas for the
approximate modal frequencies of the bilinear system. As an example, for a
uniform #-DOF mass—spring lattice the 4;’s in equation (3) are unity and the

.Qi = Tw_;
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eigenfrequencies before contact are known from the dispersion relation to
be w_; =2 sin[(2i— 1)r/(4n + 2)] which are enclosed in the interval [0, 2].
In addition, if @ = /2 such that the free spring has the same stiffness as the
others, then the -eigenfrequencies after contact are similarly known as
w ;=2 sin[in/(2n + 2)] such that y;, = sin[iz/(2n + 2)]/sin[(2i — 1)x/(4n + 2)] > 1
and the approximate bilinear modal frequencies are directly obtained from
equation (39). For a vanishing clearance this reduces to

Qi =20/(1 +1/7;) = 204/(1 + ), (40)

where w_;, w,; and y; are given above. Since y; > 1, equation (40) states that
each €; is contained in the interval [w_;, ;. As i—n, y;— 1 and this interval
shrinks with €; approaching both w_; and w.; The same approach can be used
with other spatially periodic lattices. For a non-vanishing clearance, it is
expected that the BNM frequencies satisfy the ‘“compatibility conditions” that
Q. €lw_;, wyy] for pe[-1, 1] and Q,—-w_; and w;; as p—1 and -1,
respectively. However, equation (39) does not satisfy these conditions. This
apparent discrepancy can be better understood by examining the resulting
frequencies for the uniform lattice above when n/i becomes large. Then y; — 2i/
(2i—1), x1.,— x., and the lower bilinear modal frequencies are approximated by

o - 200 - iUl S LT
o (1+2/n)sin™! p)+w_; (1+(1/m)sin'p)i—1) L

where w_; = (i—1/2)nc/L and w.; = inc/L are the natural frequencies for
longitudinal vibrations of fixed—free and fixed—fixed bars, respectively, in terms
of the wavespeed (¢) and length (L). When p = 0 it can be easily shown that
Q,e[w_;, ;] and becomes more linear as i increases. However, it can also be
seen that equation (41) does not satisfy the compatibility conditions above for a
non-vanishing clearance. In fact, for a fixed p#0 this approximation quickly
breaks down as the mode number i increases. A better approximation would be
Q, = i(i—1/2)/[i — (1 — (2/n) sin~!p)/4] (nc/L) which in fact does satisfy the above
compatibility conditions. Apparently equation (39) requires similar modification.
In any case, it can be seen that, unlike its linear counterparts, the BNM
frequencies depend on the total energy through the presence of p (which depends
on the initial amplitude).

4.3. GLOBAL EQUIVALENT LINEAR STIFFNESS METHOD

Zuo and Curnier [12] presented an approximate analytical approach for
obtaining the BNM frequencies for a bilinear multi-degree-of-freedom system
with vanishing clearance by constructing a linear system whose natural
frequencies approximate that of the bilinear system. For this purpose, they
directly extended the concept of obtaining an equivalent linear stiffness by
postulating an equivalent stiffness matrix

K., = 4(K'? +K;'%)7 (42)

by analogy with equation (27), where K_ and K, are the stiffness matrices
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before and after contact which have leading (top-left-most) elements k_ and k.,
respectively. The solution of the eigenvalue problem \Keq—wng\ =0 is then
utilized to obtain the approximate BNM frequencies w,,. In their study, these
were found to be accurate only when the strength of non-linearity
0=ws—w_=(au—1w_ was small, and the resulting frequencies for two-
degree-of-freedom non-gyroscopic and gyroscopic systems were plotted up to
0 = 2. For high values of 9, their approximate BNM frequencies diverged from
those obtained via a numerical iteration technique.

This formulation may also be extended to include clearances by using the
“corrected” stiffnesses k_ and k. given by equations (29) and (30) as the leading
elements in the associated stiffness matrices. This results in the equivalent
stiffness matrix

~—1/2 ~—1/2, _
K, = 4K "7+ k)72 (43)

in normalized time in which the stiffness matrices themselves are “‘corrected” to
account for non-vanishing clearances. The approximate BNM frequencies are
then given by the solution of the eigenvalue problem \Keq—wgql\ = 0 since the
masses were incorporated in the stiffness matrix in equation (3). In contrast with
the piecewise modal method for approximating the BNM frequencies, only one
set of eigenfrequencies must be calculated using this technique. Since the matrix
elements in K,, in general differ from the corresponding ones in K_ and K ., the
presence of a clearance affects the equivalent stiffness matrix globally. As a
result, the effects of the clearance are not easily seen in this matrix. In addition,
several problems arise with this method which preclude its effective use under
certain conditions. These include the fact that above or below certain values of
p, the pre- and post-impact ‘“‘corrected” stiffness matrices are not positive
definite so that their square roots in equation (43) are not defined. (This result is
not physical, of course; it results from the manner in which the clearance effects
are introduced.) Also, the results show non-physical clearance variations in the
frequencies of both modes for « =1, the linear case where the results are
expected to be most accurate. In general, the results diverge as the magnitude of
p increases and the compatibility conditions described above are not observed.
Hence, this method is only effective for small non-linearities and clearances.
Because it requires taking matrix roots and inverses, it is also necessary from a
practical standpoint that the dimension of the system be small.

4.4. LOCAL EQUIVALENT LINEAR STIFFNESS METHOD

In order to extend the accuracy of the previous method to larger clearances,
another approach for assembling the equivalent linear stiffness matrix is sought.
To this end it is recognized that, in contrast with equations (42) and (43), only
the leading element of K., should be affected by the presence of the free spring.
Since the problem of determining this matrix element was solved in section 3, the
equivalent stiffness matrix in normalized time for this approximation is the K
matrix in equation (3) with k., from equation (28) replacing K;; as the leading
element. This is not only more straightforward than equation (43) but also
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results in more accurate BNM frequencies for bilinear systems with a large non-
vanishing clearance/interference. By thus altering an individual stiffness matrix
element /ocally as needed from the solution to a one-dof problem, the effect of
the clearance on each mass of the system is easily seen in K., while the effects on
the frequencies properly diminish as the dimension of the multi-dof system is
increased. The solution of the eigenvalue problem [K,, — a)gql\ = 0 then yields the
approximate BNM frequencies w,, for both modes. In general, the approximate
frequencies will overestimate the true ones and thus serve as an upper bound as
in the Ritz method. For the limiting linear cases of p = + 1, however, the results
are exact. Furthermore, Q,€[w_;, w,] for p€[—1, 1] so that the compatibility
conditions are satisfied. As with the previous method, only one set of
eigenfrequencies must be calculated. For any value of o, however, the
frequencies obtained using this approximation are more accurate for large
clearances than those obtained using equation (43). In addition, the method can
be easily implemented for high dimensional systems.

5. EXAMPLE: TWO-DEGREE-OF-FREEDOM BILINEAR SYSTEM

The three methods of section 4 are now applied to the two-degree-of-freedom
bilinear system obtained by considering only the motion of the first two masses
of Figure 1 with mass 3 held rigid. The values of A;, and 45, in equation (3) are
set to unity. The total energy of the system is found from the initial potential
energy

I —1]|x
E=3[xi0 X2 [_1 > } [xig] = 1(xfy + 2x3) — 2x10x20), (44)

while the potential energy in the second subregion is V=
(3, + (x14 —x20)* + (> = 1)(x1+ —x,.)?)/2. In order to assess the accuracy of
the three approximation techniques, their results are compared with those
obtained via numerical simulation of the two-mass system using the same
algorithm as described in section 3. Figure 7 shows the simulation results in the
configuration space for a variety of different clearances and interferences with
total energy E=1 and o> = 2. In each case, the smaller closed solid curve
represents the maximum equipotential boundary inside which the motion must
remain while the large ellipse represents the corresponding boundary in the
absence of the free spring. The open dashed curves are the BNMs. The first and
last cases are completely linear and the corresponding normal modes are straight
lines as expected. It is seen in several cases that three period 1 BNMs are
present. (Period & BNMs cross the boundary between subregions & times in a
half-period.) Two of them, the short-dashed and long-dashed modes, will be
called BNM 1la and BNM 1b since the motions of each approach those of the
first linear normal mode at p = 1 and —1 (the first and last cases), respectively. It
is seen that, unlike a similar 2-DOF example in reference [13], the normal modes
in this problem do not uniquely correspond to the linear ones. As BNM la and
1b approach p = —1 and 1, respectively, a bifurcation into higher period BNMs
(represented by the additional solid curves in Figures 7(d) and 7(h)) occurs
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(b)

()

Figure 7. Numerical simulations in configuration space of BNM la (----), BNM 1b (-—-),
and BNM 2 (—-—) with o = /2 and x, = (a) 20, (b) 15, (c) 1-0, (d) 0-5, (e) 0-0, (f) —0-5, (g)
—1-0, (h) —1-5, (i) —2-0 for the two-degree-of-freedom bilinear system. The solid closed curves are
the maximum equipotential boundaries with and without the free spring while the additional solid
curves in (d) and (h) represent bifurcations to higher period BNMs.

before they are absorbed into the second linear normal mode. The short-long-
dashed mode is BNM2 since it approaches the second linear normal mode at
both p =1 and —1. This occurs for a smaller clearance/interference than in
BNM la,b since the amplitudes of mass 1 are smaller.

The initial conditions for the BNM simulations were found by trial and error.
For each different x, case, the parameter p was computed separately for each
mode and the frequencies were obtained from the simulation. The results are
tabulated in Table 1. An important issue is how the parameter p is defined.
While p = x./x)0 is sufficient for BNMs la and 2, a more general definition is
required for BNM 1b since the fact that the initial motion of this mode is in the
negative x; direction may lead to ambiguous values of p greater than 1 even
though the boundary between subregions is still crossed. By defining p = x./x;+
where x« 1S the maximum penetration if the free spring were removed, the
resulting values of p are consistent for this mode. It should be noted that the two
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TABLE 1
BNM frequencies from numerical simulations

BNM la BNM 1b BNM 2
X, p Q 0 Q p Q
-2:0 - — —1-047 10 - —
-15 - - —0-750 0-962 —1-031 1-732
-1-0 —0-714 0-854 —0-571 0-906 —0-833 1-714
—0-5 —0-275 0-805 —0-323 0-862 —0-541 1-679
—0-375 - - - - —0-436 1-673
—0-25 —0-129 0-781 —0-161 0-845 —0-316 1-663
—0-125 - - - - —0-174 1-652
0-0 0-0 0-758 0-0 0-830 0-0 1-645
0-125 - - 0-150 0-823 0-211 1-637
0-25 0-125 0-737 0-374 0-816 0-472 1-627
0-375 - - - - 0-781 1:620
0-5 0-25 0-717 - - 1-110 1-618
1-0 0-503 0-679 - - - -
1-5 0-761 0-643 - - - -
2-0 1-027 0-618 - - - -

definitions of p are equivalent for BNMs la and 2 since the initial motion in
these modes is in the positive x; direction. Also, the present convention of
calculating the frequency as a function of the ratio of the clearance to the peak
displacement of mass 1 is very similar to the form of the results in reference [13]
in which the clearance was fixed. The numerical BNM frequencies of Table 1 are
plotted as a function of p in Figure 8 as the dots connected by short-dashed
lines. It is seen that BNMs la and 1b exist simultaneously for most of the
region. Since each of the three approximation methods can yield only two BNM
frequencies, it is expected that an accurate approximation for the first modal
frequency will closely track those of BNMs la and 1b for high and low values of
p, respectively, while migrating from one to the other somewhere in between. As
can be seen, this accurately describes the results of the piecewise modal and local
equivalent linear stiffness methods.
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Figure 8. Bilinear natural frequencies for the two-degree-of-freedom system in (a) BNM la-
b and (b) BNM 2 computed via the piecewise modal method ( ), global (———-) and local
(———) equivalent linear stiffness methods, and numerical simulations (@----@) as a function
of clearance for o = /2. The BNM la (for —0-714 < p < 1-0) simulation frequencies are lower
than those of BNM 1b (for —1:0 < p < 0-:374) for a given p.

The piecewise modal method yields the approximate BNM frequencies by
equation (39). The linear normal mode frequencies before contact are
w_1, = 0-618, 1-618, while those after contact are found in terms of « as

Wi = \/[a2+2$\/oc4—4oc2+8]/2. (45)

For o? =2 they are w4, = 1:0, 1732 while y;, = 1-618, 1-070. These linear
frequencies are evident in Figure 8 at p = 1 and —1. Since the motion is assumed
to lie on the eigenvectors in each subregion, equation (44) may be used to
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express p as a function of the total energy in each of the two BNMs as p = x,/
(1:9465V/E) for the first mode and p = x./(0-4595\/E) for the second mode. The
resulting frequencies are plotted as the solid lines in Figure 8 in which it is seen
that this technique is much more accurate for the first mode than for the second.
As was discussed in section 4.2, this is because of the greater discontinuity in the
displacement and velocity of mass 2 which occur at the boundary between
subregions in the second mode. This can be seen by attempting to match the
linear eigenvectors at the point of contact. While this can be accomplished for
the first mode with little discontinuity for any value of p, the resulting gap
between the eigenvectors of the second mode quickly becomes large as the
magnitude of p increases. Consequently, the method yields reasonable
frequencies for the second mode only within a very small band near p = 0 (or
actually closer to p = 0-1).

The global equivalent linear stiffness method yields the equivalent stiffness

matrix as
~ 12 [~ —1/2\ 2
ko —1 ke —1
K., =4 + 4

where the “corrected” stiffnesses are given in equations (29) and (30) with o = 2
and the BNM frequencies are determined from [K,, — a)gql\ = 0. For 200 equally-
spaced values of p, the resulting frequencies were computed and are plotted as
medium-dashed lines in Figure 8 in which it is seen that this technique is more
accurate for larger regions of interferences than clearances in both modes. On
both sides of these regions the approximations rapidly drop off. In fact, equation
(46) does not give any real frequencies for p>0-6 in either mode since the
submatrices above do not remain positive definite past this point. It is also seen
that the method is accurate for a larger range of p in the second mode than in
the first.

The local equivalent linear stiffness method yields a different equivalent
stiffness matrix as

keg —1

where k., is given in equation (28) with «* = 2 and the BNM frequencies are also
2

determined from [K,,— weql\ = 0. Again, for 200 values of p the resulting
frequencies were computed and are plotted as long-dashed lines in Figure 8. It is
apparent here that, although the other methods may be more accurate at certain
points in one mode or the other, the results from this technique lie closer to the
numerically computed frequencies over the whole range of p in both modes than
do those of the other methods. In addition, the compatibility conditions
discussed in section 4.2 are satisfied. Hence, this technique was utilized to plot
the BNM frequencies of both modes as functions of p for several values of o in
Figure 9. A good qualitative understanding of the effects of clearance variations
on BNM frequencies may be obtained from this figure, which is similar to that

(Figure 6) for the single mass problem. It is seen that, while the frequencies in
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Figure 9. Bilinear natural frequencies for the two-degree-of-freedom system computed via the
local equivalent linear stiffness method as a function of clearance for (bottom to top in both
modes) o = 1, v/2, 2, 4, 10 and oo.

both modes increase with a decrease in p, those for the first mode approach an
asymptotic limit of v/2 = 1-41 for p = —1 as o — oo while those for the second
mode approach a. As in Figure 6, the results of Figure 9 are independent of p
when o« = 1 and all of the first and second mode frequencies uniformly approach
the values of 0-618 and 1:618, respectively, when p = 1. In contrast, the results
obtained from the global equivalent linear stiffness method do not conform to
these expected results.

The small errors in the results from the local equivalent linear stiffness method
result from the approximated frequencies overestimating the true ones as in the
Ritz method. As anticipated, these deviations occur mainly around p = 0 while
the BNM frequencies are exact at p = +1. These errors increase with an
increase in o as shown in Figure 10 in which the BNM frequencies computed via
the three methods are plotted as a function of « for zero clearance along with
those obtained from numerical simulations. These simulations are qualitatively
similar to those in Figure 7 but are not shown here (except for those
corresponding to & = v/2 which appear in Figure 7(e)). It should be noticed that,
if little clearance is present, then one of the other methods gives more accurate
results, while the local equivalent linear stiffness method is obviously more
reliable in predicting the BNM frequencies for systems with large clearances. As
o becomes very large and vibro-impact results, however, the dynamics can be
much more complicated with BNMs of higher period occurring in between
regions of chaotic behavior [14]. In that case it is questionable how much useful
information can be obtained from any of the present approximation techniques
which are better suited to systems with smaller nonlinearities.
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Figure 10. Bilinear natural frequencies for the two-degree-of-freedom system in (a) BNM la-b
and (b) BNM2 computed via the piecewise modal method (——), global (——-) and local (———)
equivalent linear stiffness methods, and numerical simulations (@---@) as a function of a for
zero clearance. The BNM la (for o > 1-0) simulation frequencies are lower than those of BNM
1b (for o = 1-41) for a given p.

6. CONCLUSIONS

The effects of a clearance on the normal mode frequencies of a system with
bilinear stiffness were investigated. First, the exact penetration distances and
bilinear natural frequencies of a single-degree-of-freedom system were
analytically obtained in terms of the amount of clearance and the strength of
non-linearity, and an equivalent linear system (with the same frequency) was
derived. The formula for the natural frequencies was shown to reduce to the
well-known bilinear frequency relation for vanishing clearance. The results were
exact (to computational accuracy) when compared to those obtained from
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numerical simulations. Three approximate methods for obtaining the bilinear
frequencies for the n-dof system including clearance effects were then outlined
and the resulting frequencies were compared with those obtained from numerical
simulations of a two mass system. The latter revealed three distinct modes for
o = +/2, two of which are perturbations of the first linear mode for different
ranges of clearance/interference. In the piecewise modal method, the bilinear
frequency relation employing the linear modal frequencies in each of the linear
subregions as in reference [14] was directly modified to include a non-zero
clearance/interference. The resulting frequencies were very good in the first
bilinear mode but poor in the second due to large discontinuities at the instant
of contact. In the two equivalent linear stiffness methods (the first of which was
based on a technique for zero clearance utilized in reference [12]), an equivalent
linear stiffness matrix was constructed and the resulting eigenfrequencies were
determined. The ‘“‘global” version was more accurate for systems with little
clearance while the “local” version was more accurate for systems with a large
clearance or interference since the results were exact at the two ends in which the
problem becomes completely linear.

The local equivalent linear stiffness method was also used to construct Figure
9 which demonstrates how the clearance magnitude affects the bilinear
frequencies of both modes for a variety of different stiffnesses of the free spring.
Errors resulting from an overestimation of the true frequencies appeared mostly
for large non-linearities and small clearance magnitudes. This diagram, which is
similar in many ways to that (Figure 6) obtained for the single mass system,
provides a good qualitative picture of the clearance effects in each of the bilinear
normal modes and points toward the need for including such effects in methods
which utilize the bilinear frequency relation. For example, the piecewise modal
method was based on the technique employed in reference [14] which utilized the
bilinear frequency relation in calculating the natural frequencies of a cracked
beam. In that study, two finite element models of the beam (with the crack open
and closed) were constructed from which the two separate sets of modal
frequencies were obtained for use in equation (32). Since a clearance was not
included, the results were appropriate for a thin crack which is closed at static
equilibrium and open only during bending, or in other words when the
boundary between linear subregions passes through the origin in the
configuration space. However, for a wider crack which is also open at
equilibrium the presence of the clearance between the crack faces requires the
inclusion of its effects in the approximation since the resulting bilinear modal
frequencies will be smaller than those resulting from a thin crack. Although any
of the three methods discussed here could theoretically be utilized to include the
clearance effects in the finite element model, it is observed that relatively little
effort would be required to use the piecewise modal method in conjunction with
standard finite element packages as was done in reference [14]. The local
equivalent linear stiffness method, on the other hand, would require code
specifically tailored to the problem since certain individual elements of the
stiffness matrices (those corresponding to the degrees of freedom associated with
the nodes on the crack faces) would require separate modifications. The greater
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accuracy of the results obtained from this technique for the two mass system
(especially for the higher mode) may justify the development of such code,
however. The previously-mentioned limitations of the global equivalent linear
stiffness method makes that technique incompatible with a large finite element
problem.
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